

Dual-rail Random Switching Logic

A Countermeasure to Reduce Side Channel Leakage

Zhimin Chen and Yujie Zhou Shanghai Jiao Tong University, China

CHES2006, Yokohama, Japan

Outline

- Introduction
- Model & Analysis
- DRSL
- Experimental Results
- Conclusion

Introduction

Development trace of Circuit Level Countermeasures.

Example:

Take MDPL AND for example, $q_m = ((a_m \oplus m)(b_m \oplus m)) \oplus m$ $\overline{q_m} = ((\overline{a_m} \oplus \overline{m})(\overline{b_m} \oplus \overline{m})) \oplus \overline{m}$

In the time interval between t_1 and $\underline{t_2}$, $\underline{a_m} = \overline{a_m} = 0$ while $\underline{b_m} = \underline{b} \oplus m$ and $\underline{b_m} = \underline{b} \oplus m$. Then $q_m = \overline{bm}; q_m = \overline{bm}; q_m + \overline{q_m} = (0, \overline{b}).$

b is a predictable variable, therefore, there is power leakage in the time interval (t_1,t_2) .

Dual-rail Masked Logic

Gate Model

- only one independent output for each gate
- only one independent factor for each gate

 $q = f(a_0, a_1, \dots, a_{n-1}, m)$

Here after, we also represent $\{a_0, a_1, \dots, a_{n-1}\}$ as A

Power Model

- suppose inputs arrive at k different moments
 E = (E₀, E₁,..., E_i,..., E_{k-1}, E_k)
- when the output is stable at moment *i-1* and *i*, then E_i can be written as E(0,0), E(0,1), E(1,0), or E(1,1)
- otherwise, E_i can be represented by tE(0,1) or tE(1,0), where t is mainly determined by the length and position of the interval

Single-Rail Circuits

Statistical independence between E_i and A lays on $P(q=0/A_i) = P(q=0/A_j)$

(q is correlated with each input and not a constant)

$$q=f(A,m)=g(A)\oplus m$$

and

$$P(m=0)=P(m=1)=0.5$$

• E_k and A (all inputs arrived)

We assume that the final stable value of the output satisfy the sufficient and necessary condition

• E_{k-1} and A (only a_{im} remains pre-charged)

$$a_{im} = a_i \oplus m = 0 \implies$$

$$a_i = m \implies$$

$$q = f(A,m) = g(a_0, a_1, \dots, a_{i-1}, m, a_{i+1}, \dots, a_{n-1}) \oplus m \qquad (1)$$

$$\stackrel{?}{=} h(a_0, a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_{n-1}) \oplus m \qquad (2)$$

A Boolean function f can not be written as both (1) and (2)!

• E_{k-1} and A (only m remains pre-charged)

Input m=0
$$\Rightarrow$$

 $a_i = a_{im} \oplus 0 = a_i \oplus m \Rightarrow$
 $q = f(A,m) = g(a_0 \oplus m, a_1 \oplus m, \dots, a_{n-1} \oplus m) \oplus 0$ (3)
 $\stackrel{?}{=} h(a_0, a_1, \dots, a_{n-1}) \oplus m$ (4)

- A Boolean function *f* can be written as both (3) and (4) only when
- *n is an odd number*
- $h(a_0, a_1, ..., a_{n-1}) = f_a(a_0) \oplus a_1 \oplus ... \oplus a_{n-1}$

Lots of gates, such as AND and OR, do not meet the above condition

Conclusion 1:

In Single-Rail Cryptographers with all signals masked by the same random bit, when inputs arrive at a logic gate at different moments, predictable factors dependent power leakage occurs no matter glitches appear or not.

Dual-Rail Circuits

Two complementary signals constitute of a circuit element. The total hamming weight be calculated as follows.

$$(q_1,q_0)=q+\overline{q}$$
$$q_0=q\oplus\overline{q}, q_1=q\overline{q}$$

Statistical independence between E_i and A lays on

$$P(q_0=0/A_i) = P(q_0=0/A_j)$$

and

$$P(q_1=0/A_i) = P(q_1=0/A_j)$$

Conclusion 2:

In Dual-Rail Cryptographers with all signals masked by the same random bit, when inputs arrive at a logic gate at different moments, predictable factors dependent power leakage occurs no matter glitches appear or not.

DRSL

Why Dual-rail Random Switching Logic

- Among the former countermeasures, only RSL can synchronize inputs
- Pre-charged and evaluated values in Dual-Rail circuits do not have intersection. This makes it possible to judge whether all inputs have arrived
- Differences between DRSL and MDPL only exist inside the gate. Their interfaces are identical. Therefore, when integrating DRSL into a system, MDPL can be a good reference, much work has been done

DRSL

Basic Cells

- two RSL cells + one precharge generation circuit
- Inverters = swapping inputs
- Odd-number-input XOR and XNOR functions do not need a random signal input

DRSL

- DRSL DFF is similar to MDPL DFF
- $XOR_{DRSL} < XOR_{MDPL}$

DRSL DFF

DRSL

Area

DRSL cell	Implementation	Area (um ²)		Ratio
		DRSL	standard	DRSL/std.
Inverter	Wire swapping	0	0.67	0
Buffer	2 Buffer	2.66	1.33	2
AND, OR(2-in)	2 RSL NAND, Pre- charge Circuit (3-in)	7.21	1.33	5.42 🕇
NAND, NOR(2-in)	2 RSL NAND, Pre- charge Circuit (3-in)	7.21	1	7.21
XOR	2 RSL XOR, Pre- charge Circuit (3-in)	8.82	2.67	3.30
XNOR	2 RSL XOR, Pre- charge Circuit (3-in)	8.82	2.67	3.30 🛔
D-FF	1 DRSL XOR, 1 CMOS D-FF	14.49	5.67	2.56

As the gate becomes more complex, ratio becomes smaller

Experimental Results

Setup

• a_m arrives last

Hspice simulation performed on 2-input AND gates implemented by Single-Rail masked logic, WDDL, MDPL, and DRSL

Power traces are divided into two groups according to b

Then we get Mean(b=0) – Mean(b=1)

• m arrives last

Division happens to be the same as the former.

Experimental Results

17

Performance

Peak-to-peak leakage reduced by at least 61%. When considering the total power leakage, DRSL's performance is even better

The power trace can be divided into two parts. The former high-frequency one is caused by the pre-charge circuit, while the latter low-frequency one comes from the logic part.

上海交通大學 Experimental Results

Analysis of the remaining fluctuation

Gates with different inputs have different charging speed. For example, charging speed is higher when $a_m b_m m=000$ than it is when $a_m b_m m=100$

Conclusion

- Power model is presented based on the hamming weight of outputs and transition of inputs
- Theoretical analysis demonstrates that leakage appears whenever inputs are asynchronous
- DRSL is proposed. Experimental results show that leakage is reduced
- Immediate current leakage still exists. Maybe Models based on the total power consumption in a certain time interval are not enough

THANK YOU